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Relaxation Phenomena in Spin and Harmonic Oscillator Systems 
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Department of Physics, Brandeis University, Waltham, Massachusetts 
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A method is developed for generating relaxation by introducing a fundamental interval r and a stirring 
hypothesis. The application to spin and harmonic oscillator systems is discussed in some detail. All the re
sults are obtained by exact calculations without applying perturbation theory as the systems considered 
are simple and completely soluble. Equations similar to phenomenological Bloch equations are derived in 
the case of spin systems. The relaxation times obtained by the application of the theory are not only pro
portional to the strength of interaction, but also to the fundamental interval T which plays an important 
role in the theory. It is shown that in the case of a harmonic oscillator system, an initial Boltzmann distribu
tion relaxes to a final equilibrium Boltzman distribution through a sequence of transient Boltzman distri
butions. 

INTRODUCTION 

THIS is a continuation of our work on stochastic 
dynamics of quantum-mechanical systems.1 We 

have shown in our previous work that non-Hamiltonian 
dynamics is essential for relaxing systems without 
going into the details of generating relaxation mecha
nisms. Here we develop a theory for generating re
laxation and apply it to simple systems such as coupled 
spins and coupled harmonic oscillators. 

The unitary time development of the density matrix 
is characteristic of all isolated physical systems and 
others which are acted upon by external agencies but 
do not react back on them. An example of the latter 
type is an ensemble of particles with spin (and asso
ciated magnetic moment) in an external magnetic field. 
On the other hand, one may be interested in a physical 
system A which forms part of a larger system or is in 
interaction with another system B; for instance, in 
paramagnetic relaxation, a system of spins in inter
action with lattice. Again, in a system with several 
degrees of freedom, one may be interested in just one 
or a few of these; for example, the spin state of particles 
scattered by a target possessing spin, irrespective of 
the distribution of their directions. In all these cases 
it is possible to define density matrices which refer only 
to the system or degree of freedom of interest and thus 
contain just the desired information. Such a density 
matrix, say, pA may be obtained by taking a partial 
trace of the density matrix pAB describing the complete 
interacting system. Thus, if A denotes a complete set 
of commuting observables for the system A of interest 
and B the additional set of observables required to 
specify the state of the total system (A+B) completely, 
one can choose a representation of the density matrix 
PAB labeled by the eigenvalues a, b of A} B. Then pA 

has matrix elements defined in terms pAB by 

with the density matrix pA satisfying the following 
conditions2""4: 

Paa' Pao,a'b (l.l) 
* Supported by the Office of Naval Research at Brandeis 
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1 E. C. G. Sudarshan, P. M. Mathews, and Jayaseetha Rau, 

Phys. Rev. 121, 920 (1961). 

(0,p^) = (pA4>$) (hermiticity), (1.2) 

(<t>,pA<t>)^0 

TrpA=l 

(positive-semidefiniteness), (1.3) 

(normalization). (1.4) 

[In (1.1) and throughout we have invoked the sum
mation convention whenever repeated indices occur.] 
While the development of pAB(t) is unitary that of 
pA (t) is not unitary in general. The specification of pA 

at one time h is not sufficient to determine pA at any 
future time h. For this, in general, one has to refer back 
to the equation for pAB, solve it to obtain pAB (fe) and 
then evaluate pA(t2) by using (1.1). However, there are 
situations of great physical interest where one can 
write down an equation for pA that gives very close 
approximation to the actual time development of pA 

and thus avoid the necessity for appealing to pAB at 
every stage. The classic example of this is the Bloch 
equations5 for paramagnetic relaxation, in which the 
effect of the interaction of spin (A) with reservoir (B) 
are lumped into a few relaxation times. 

In Sec. 2 we develop a general program for relaxing 
systems by introducing a "stirring hypothesis" with a 
fundamental interval r. In Sees. 3,4, S, and 6 we discuss 
in some detail relaxation mechanism of two coupled 
spins and derive equations similar to Bloch equations. 
Finally, in Sec. 7 we treat an example of a coupled 
harmonic oscillator and show that an initial Boltzmann 
distribution relaxes to a final equilibrium Boltzmann 
distribution through a sequence of transient Boltzmann 
distributions. 

2. GENERAL PROGRAM FOR RELAXING SYSTEMS 

We consider a system C composed of two subsystems 
A and B: A corresponds to the "physical system" of 

2 J. Von Neumann, Mathematical Foundations of Quantum 
Mechanics (Princeton University Press, Princeton, New Jersey, 
1955). 

8 R. C. Tolman, The Principles of Statistical Mechanics (Clar
endon Press, Oxford, 1938). 

4 U. Fano, Rev. Mod. Phys. 29, 74 (1957). 
6 F. Bloch, Phys. Rev. 70, 460 (1946). 
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interest; B corresponds to the "reservoir" or "thermal 
bath." The composite system AB=C is considered as a 
complete system even though B is kept in an inex
haustible temperature bath. We can, of course, include 
"external forces" in the Hamiltonian of the composite 
system. Now we write the density matrix for the 
complete system C in the following fashion: 

pc^pAB=>paha,b,cy ( 2 .1 ) 

where the indices a, a! correspond to the "coordinates" 
of the subsystem A and similarly b, bf correspond to the 
coordinates of the subsystem B. Now we consider a 
special class of density matrices whose dependence of 
b, V is simply of the form hw. Often the density matrix 
for the complete system is given by 

Pab,a'b'C:=paa>AiPBhb>, ( 2 . 2 ) 

where pA is the density matrix for the subsystem A 
and ¥B8bbf is the density matrix for the subsystem B. 

Similarly, a general Hamiltonian for the combined 
system is given by 

3CC ~» 3Ca6,a' V = SC^+^+SCint, (2.3) 

where 3CA and 5CB are the Hamiltonians of the systems 
A and B, respectively, and 3Cint is the interaction energy 
operator of the combined system. 

Now let us suppose we are interested in finding how 
the system A relaxes when it is in contact with system 
B. We first start with a density matrix of the subsystem 
A which is paa'

A and "extend" it to be a density matrix 
for the combined system C by defining 

pab,a'b>C = paa>AVB8bb'. 

A similar process of "extension" can be defined for 
Hamiltonians of systems A and B also: 

Waa>A - > 3 C a 6 , a ' b ' C - 3 e a a ' A 5 6 b ' , ( 2 . 4 ) 

3Cbh>
B - » 3Cab,a>b>C^Wbb>B&aa>. ( 2 . 5 ) 

The Hamiltonians 3C"1 and 3CS correspond to energy 
operators of the systems A and B, respectively, when 
the systems are not in contact with each other. If the 
systems when brought into contact do not interact 
then no relaxation takes place. Interaction between 
the two systems A and B is the mechanism which 
brings about the relaxation phenomena. Therefore, to 
produce relaxation, the general Hamiltonian must 
contain in addition to such extended subsystems 
Hamiltonians (2.4) and (2.5), a true two-system 
Hamiltonian ("interaction Hamiltonian") which can 
not be written as the sum of two independent terms. 

Finally, we define a process of "stirring" which 
associates with every general density matrix of the 
combined system C=AB, a special density matrix C 
by the following correspondence 6: 

pab,a>b>°'=» ®{pab,a>b'C}=pan,a>nCpbb'T. ( 2 .6 ) 

This process of stirring thus defines for every density 
matrix pc a special density matrix <3(pc); this corre
spondence is linear but, in general, not unitary; in fact 
as can be seen it has no inverse since many general 
matrices are mapped into a special density matrix. 

This process also associates with every general 
density matrix pc a density matrix pA of the subsystem 
A by the way of "restriction": 

Pab,a'b>C=> Paa'A = Pap,a>(3C ( 2 . 7 ) 

and the mapping <5(pab,a'b'C) is simply the "extension" 
of this "restriction." 

Now let us start with the density matrix of the 
subsystem of interest paa

fA(0) at time 2=0, and extend 
it to Pab,a>b>(0) = Pan,a>nAPbb>T and compute the density 
matrix pc(lr) at r by the following unitary trans
formation : 

PC(U)=U°(T)P
C(0)UV(T), (2.8) 

where i7c,(r) = exp(irXc) and 3CC is an appropriate 
combined system Hamiltonian containing an "inter
action." The quantity r is an appropriate parameter 
which is intrinsic to the system which we have referred 
as "fundamental interval" previously. 

Now we compute a new density matrix pA{\r) for 
the subsystem A given by 

Paa'A(lr)= (Uc(r)pc(0)Uc%&,a^. (2.10) 

We extend the system paa
fA0-r) to pab,a'b'C(lr) by the 

following relation: 

Pa&,a'&'C(l7-) = pan ,a 'n" 1 ( l r )p&6 ' 7 ' . ( 2 . 1 1 ) 

We again compute £/c(lr)pc(lr)£/c+(lr) and obtain 
pc(2r). By the same procedure we obtain a new density 
matrix for the subsystem of interest paa

fA{^r), We 
continue this process n times and obtain 

P a « ' A ( n r ) = { ^ ( r ) p ^ [ ( i i - l ) r ] ^ ( r ) } 0 ^ . ^ (2.12) 

pab,a>b>CZ(n— l ) r ] = P a n , a ' n A [ ( w — l ) T ] p b & ' r . ( 2 . 1 3 ) 

The integer-valued variable n now serves as a "time 
parameter" and, in general, as n increases the sub
system density matrix pA (nr) corresponds to more and 
more relaxation. We may call the nth case an w-step 
relaxation. 

The following assumptions have been made in the 
formulation of generating relaxation developed above. 

(I) Statistical independence of the density matrix 
of system A and system B at t=0, or, in other words, 
the density matrix of the combined system could be 
factorized into density matrices of component systems 
at *=0, i.e., pc(0) = p^(0)pB(0). 

(II) The relaxation times (e.g., T\ and T2 for spin-| 
systems) of the system of interest, A} are much larger 
than the fundamental interval r. 

(III) Time averages are never taken but at every 
fundamental interval r, partial trace with respect to 
the reservoir is taken. 
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(IV) The system B is assumed to be in contact with 
an inexhaustible reservoir so that the change in the 
system B is negligible. At every interval r the system 
B goes back to its original state a t 2=0 while system 
A of interest changes its state. The mechanism of 
stirring introduced in this model annuls the correlation 
between the system A and B at every fundamental 
interval r and discards all the off-diagonal elements of 
the system B which acts as a reservoir. 

3. DYNAMICS OF A SYSTEM OF TWO SPINS WITH NO 
EXTERNAL MAGNETIC FIELD AND ONE OF 

THE SPINS IN CONTACT WITH INFINITE 
TEMPERATURE BATH 

Let % and r\ be the wave functions of the two spins; 
these are then two-component vectors representing 
the amplitudes for spin-up and spin-down states. The 
complete wave function for the total svstem is given 
by 

t=x®y, (3.1) 

where ^ is a four-component vector. The Hamiltonian 
for the system is a 4 X 4 matrix. 

Let the Hamiltonian of the combined system be 
given by 

Xc=JC^+3Cs+5Cint=5Cint= X K-0-2,-), 
i = l , 2 , 3 (3.2) 

where 3CA — 3CB=Q as there is no external magnetic 
field acting on the system and X denotes the strength of 
coupling between the two spins. 

The density matrix of the combined system at / = 0 
is given by 

where 

and 

P c = K ( i / + # i i * i i ) , 

pA=^I+plj(7lj 

P 2i> 

(3.3) 

(3.4) 

(3.5) 

where <ri and or2 are Pauli spin operators for systems 1 
and 2, respectively, and pu (j=l,2,3) are polari
zations for the spin of system 1 in direction 1, 2, and 3, 
respectively. 

At / = 0 , system A corresponds to one of the spins 
which has the most general distribution and not im
mersed in any kind of heat bath and system B corre
sponds to the other spin which is immersed in an in
exhaustible infinite temperature bath. At / > 0 the two 
systems are brought into contact. As there is no external 
magnetic field applied to the system, the spins do not 
precess and because of the interaction between the two 
spins there will be relaxation alone. Since we are 
interested in the system A, we now calculate the 
relaxation of this system applying the theory developed 
in Sec. 2. 

The unitary matrix which transforms pc(0) into 
PC(T) is given by 

Uc (r) = exp (ik<rijCT2jT) 

= exp{ JiXr[ 0n;+o-2;)
2— tfi/- <r2/]}, (3.6) 

but we can write (3.6) as follows: 

f /C( T ) = = l e -3a r [ - 1 + 3 ^ r X + ( r i . 0 . 2 . ( e 4 i r X _ 1 ) ] ? (3 > 7) 

where r is the fundamental interval, and we have taken 
ji= 1. Now we can compute p e ( l r ) . I t is given by 

PC(1T)=UC(T)P
C(0)UC^T) 

= i+i^iyciy COS22TX+^IJO'2J sin22cX 

+sin4c\pijejki(rii(T2k. (3.8) 

If we now take the partial trace with respect to cr2 we 
get 

PA (r) = il+PijVij cos22Xr. (3.9) 

In obtaining (3.9) we have used the relation 

Trcr21=Tro-22= Tro-23=0. (3.10) 

By the method of iteration we can now calculate p{nr)^ 
which is given by 

pA(nT) = ^I+plj<Tlj(cos"2Xr)\ (3.11) 

If we let nr=t, (3.11) can be written as 

P^(0 = i /+^i^i i(cos2Xr)2^^. (3.12) 

The time evolution of the polarizations pu is given by 

Pu(0) -* Pu(t)= (cos2Xr) 2^ i y (0) . (3.13) 

Now we shall compute the matrix K which maps the 
polarizations ^iy(O) into pij(t) and is given by 

K= 
2rX)«" 
0 
0 

0 
(cos2rX)2*/T 

0 ( 

0 
0 

cos2r 
(3.14) 

The matrix K is already in diagonal form, and equation 
(3.13) can be put in the following form: 

pu(t) = e x p [ - {2t/r) In sec2rX]/>iy(0); (3.15) 

therefore 
e - ^ = e x p [ - (2//r) In sec2rX]. (3.16) 

We see that all the three polarizations pn, pn> and pu 
have the same relaxation time T given by 

T= r / (2 In sec2rX). (3.17) 

I t can be seen from (3.15) that, as /—> oo, all three 
polarizations approach zero, which corresponds to an 
infinite temperature bath. 

We can also see that there will not be any relaxation 
in the subsystem A when the coupling constant X=0. 
This means relaxation does not take place unless the 
systems A and B interact with each other and as X 
increases the rate of relaxation also increases. 

This model predicts that as the fundamental interval 
r —> 0, the relaxation in the subsystem A ceases to take 
place and therefore r should be a finite nonzero 
quantity. Thus in this model the relaxation time T is 
not only a function of X the coupling constant, but also 
a function of r the fundamental interval which is true 
of all the models discussed in the forthcoming sections. 
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4. DYNAMICS OF A SYSTEM OF TWO COUPLED SPINS 
WITH EXTERNAL MAGNETIC FIELD IN THE 

2 DIRECTION AND ONE OF THE SPINS 
IN INFINITE TEMPERATURE BATH • 

The system under consideration consists of two spins. 
An external static magnetic field H0 is applied in the z 
direction. The spin system 2 is in contact with an 
infinite inexhaustible temperature bath as in the 
previous sample and spin system 1 is assumed to have 
the most general distribution. The Hamiltonian of the 
combined system is given by 

Wc= -iriIoCcri8+er2s]+Xcryav, j = 1, 2, 3 (4.1) 

where y is the gyromagnetic ratio, 3CA=— jY-flVi3 is 
the Hamiltonian of the system A, 3CB=—^yHo(r2z is 
the Hamiltonian of the system B, and 3Cint=X<riy(T2/ 
is the interaction energy of the combined system. At 
/ = 0 as before, system A and system B are noninter-
acting and the density matrix of the composite system 
is given by 

pC(0) = p^ (<V(0 ) , (4.2) 
where 

PA(0) = V+Pwu (4.3) 
and 

P*(0) = §/ . (4.4) 

The unitary matrix which transforms pc(0) into pc(r) 
is given by 

^ ( r ) = exp[-ir((713+c723)7^o/2+X((7ii(72y)]. (4.5) 

If we compute pA (r) as before, taking the partial trace 
with respect to system B, we obtain 

pA ( r) = i/+cos22Xr|j>i;<riy cos2o>r 

— pijezjkVik sinoj/+2^130-13 s u r W ] , (4.6) 

where oo= — yHo/2 is the precessional frequency of the 
spins in the external static magnetic field Ho in the z 
direction. The time evolution of the polarizations pu 
is given by 

^ 1 1 ( l r ) = cos22Xr[^ii(0) cos2a>T+£i2(0) sin2a>r], 

£ I 2 ( 1 T ) = COS22XT[>I2(0) cos2a?r-^n(0) sin2cor], (4.7) 

^ 1 3 ( l r ) = cos22Xr^13(0). 

Now the matrix K which maps ^iy(O) to pij( lr) could 
be written as 

K= 
cos22Xr cos2cor 
cos22Xr sin2o>r 

0 

— cos22Xr sm2o>r 0 
cos22Xr cos2o>r 0 

0 cos22Xr 
(4.8) 

Since the system is subjected to an external magnetic 
field, the matrix K given by (4.8) contains the combined 
effect of rotation of the polarizations in the x, y di
rections due to the external magnetic field in the z 
direction and the relaxation effect due to interaction 
between the two spins. 

Any matrix K can be factorized into a product of 
unitary and Hermitian matrices,6 i.e., 

K=WU. (4.9) 

In the present example the rotation of the polari
zations takes place in the xy plane; the combined effect 
of rotation and relaxation is contained in the 3X3 
matrix K and it can be factorized as follows: 

0CJ7= 

The unitary matrix is given by 

U= 

cos22Xr 0 0 
0 cos22Xr 0 
0 0 cos22Xr 

cos2o>r — sin2wr 0 
sin2wr cos2cor 0 

0 0 1 
(4.10) 

J 

cos2o>r 
sin2wr 

0 

-— sin2o)r 
cos2cor 

0 

0 
0 
1 

(4.11) 

cos22Xr 
0 
0 

0 
cos22Xr 

0 

0 
0 

cos22Xr 

and the Hermitian matrix which is responsible for the 
relaxation of the polarizations is given by 

(4.12) 

Now, again by using the method of iteration, we can 
compute the time evolution of the polarizations corre
sponding to pure relaxation and this is found to be the 
same as in the previous example discussed in Sec. 3. 

As one could have expected, the magnetic field in 
the z direction does not affect the rate of relaxation of 
the system of two coupled spins. The mechanism which 
causes the relaxation is the interaction between the 
two spins and not the external magnetic field. 

5. DYNAMICS OF A SYSTEM OF TWO COUPLED SPINS 
WITH EXTERNAL STATIC MAGNETIC FIELD H0 

IN THE z DIRECTION AND THE RESERVOIR 
SPIN IN CONTACT WITH A FINITE 

TEMPERATURE BATH 

So far we discussed a system of two coupled spins 
with one of the spins in contact with an infinite tem
perature reservoir. Now we consider spin 2 in contact 
with an inexhaustible finite temperature bath which 
would result in a Boltzmann distribution for the energy 
levels. Again we assume the most general distribution 
for spin system 1. 

The Hamiltonian of the combined system is given by 

where 

3Cc=3e^+3CB+3C in t, 

3CA = 0X713, (5.1) 

6 F. D. Murnaghan, The Theory of Group Representations (The 
Johns Hopkins Press, Baltimore, Maryland, 1938). 
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The density 
given by 

where 

and 

3C*=axr23, 

3Cmt=Xa-iy0-2i. 

matrix of the combined system 

pc(0) = p^(0)p*(0), 

PA(0) = iI+pliau, 

P
B(0) = exp(-3CB/kT)/ZB, 

ZB=Trexp(-XB/kT). 

(5.2) 

(5.3) 

at t=0 is 

(5.4) 

(5.5) 

In the expression (5.5), k is the Boltzmann constant 
and T is the absolute temperature of the bath. 

The unitary matrix which transforms pc(0) into 
PC(T) is given by 

Uc(T) = exp{i[a)(<riz+<T2Z)+\crii<T2j2T}> (5.6) 

where co = —yHo/2. Now we compute the density matrix 
for the subsystem pA(r) using (5.6) and taking the 
partial trace with respect to system B. I t is given by 

PA(IT) = %I+<TU\J>IZ COS22XT— I tanh# sin22Xr] 

+°"ii{[j>ii cos2cor+£i2 sin2cor] cos22rX 

+ \ tanhx sin4\r[j>ii smcat—pn cosa>2]} 

+cm{\j>tf co$2&T—pii sin2cor] cos22Xr 

+ | tanh# sin4Xr[j>i2 sin2wr+#n cos2cor]}, (5.7) 

where x=aft, 0 = 1/kT. Since the spin systems discussed 
in Sees. 3 and 4 are special cases of the spin system 
treated here, we would like to compare the results of 
this section with the previous sections. 

If we put 0 = 0 and # 0 = 0 in Eq. (5.7) we obtain the 
following expression for pA(lr): 

pA(lT) = iI+vn{jn cos22Xr]+o-n[>n cos22rX] 
+ci2|j>i2 cos22Xr] 

= |/+^iJo-iyCOS22Xr. (5.8) 

Equation (5.8) is the same as Eq. (3.9) given in Sec. 3, 
which corresponds to the infinite temperature bath and 
no external magnetic field applied to the system. 

If we now just let 0 —» 0 in Eq. (5.7), we get an 
expression for pA (r) given by 

p^( l r ) = !/+<713[>i3COS22Xr] 

+0"n[j?ii cos2cor+^i2 sin2cor]] cos22Xr 

+0"i2[j>i2 cos2cor—pu sin2cor] cos22Xr. (5.9) 

The expression (5.9) is the same as Eq. (4.6) of Sec. 4 
which corresponds to the infinite temperature bath and 
an external field Ho applied to the system in the z 
direction. 

The mapping pij(r) = Kpij(0) is given by 

#n (r) 
pn(r) 
fin (r) 

= 
a cos2co/+& sin2co/ 

—a sin2ce/+£ cos2co£ 
0 

a sin2co/+& cos2co/ 0 ] 
a cos2a>/+& sin2co/ 0 

0 a\ 

Mo) 
Mo) 

[pn(0)~c/a 
(5.10) 

where 

and 
a = cos22Xr, b—\ tanhx sin4Xr, 

c= | tanh# sin22Xr. 

Again, as in the example treated in Sec. 4, here also 
there is the combined effect of relaxation and rotation 
in the x, y directions, while in the z direction there is 
just the pure relaxation effect. We separate these two 
effects by the method of polar factorization as before. 
The matrix K given in (5.8) can be written as 

K= 
R 
0 
0 

0 
R 
0 

ol 
0 
a) 

cos (0-5) sin (0-5) 0) 
- s i n (0-5) cos (0-5) 0 

0 0 1 
(5.11) 

where 0=2o>r, 5=tan~1(6/a), and R= (a?+b2)lf\ 
In the relation (5.11) the matrix with sines and co

sines represents pure rotation. As we are interested in 
pure relaxation phenomena, we discuss here the pure re
laxation of the polarizations pij. By using the method of 
iteration we find the time dependence of the polariza
tions pu and p12. We treat the case of pn a little later. 

^ i i (^r) = ^ ^ n ( 0 ) = [ ( a 2 +^) 1 / 2 ]^ 1 1 (0 ) , (5.12) 

pn(nT) = Ry12(0) = Z(a*+b2yt*3yi2(0). (5.13) 

Now substituting t for nr in (5.12) and (5.13), we 
obtain 

M 0 = [cos2rX(cos22rX+tanh2# sin22rX)1/2] f /^n(0), 
(5.14) 

#i2(0 = [cos2rX(cos22rX+tanh2# sin22rX)1/2]^#i2(0). 

(5.15) 

The expressions (5.14) and (5.15) can be written in the 
following form: 

pn(t) = e-t/TZln s e c 2 r X - | ln(cos22rX 
+tanh2#sin22rX)]#n(0) 

= <rtiT*pu(0), (5.16) 

#12(0 = *- ' / r «MO) , (5.17) 

where T% is the relaxation time of the polarizations pu 
and #22 and is given by 

r2=- . (5.18) 
In s e c 2 r X - | ln(cos22rX+tanh2ff sin22rX) 

We could immediately see from (5.16) and (5.17) that 
as t—> oo 

M0=M0—> °°* 
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If we let %—>0 in (5.18) the result obtained corre
sponds to the infinite temperature bath discussed in 
Sees. 3 and 4 and given by 

T 2 = T / ( 2 In sec2rX). (5.19) 

The expression (5.19) is the same as (3.17) given in 
Sec. 3. 

The time evolution of the polarization in the z 
direction corresponds to pure relaxation as there is no 
rotation of the spin polarization in the z direction and 
is given by 

plz(r) = pn(Q) cos22rX-£ tanh# sin22rX. (5.20) 

If we calculate pn{nr) by applying the method of 
iteration we obtain 

^ I S M = ( C O S 2 2 T X ) ^ I 3 ( 0 ) 
r(cos22rX)n~l- | 

— | tanh# sinVX 
L cos22rX-l J 

= (cos22rX)n£i3(0) 

+ | tanh*[(cos22rX)n-1] . (5.21) 

If we substitute nr—t in (5.21) we get 

£i3(0 = e x p [ - (21/r) In sec22rX][>3(0)+§ tanho;] 

— | tanh# (5.22) 
or 

M O - £ o = e x p [ - {21/T) In sec22rX][>3(0)-£o] 

= e - ' m [ M 0 ) - M (5.23) 
where 

po=—% tanhx 
and 

r !=r / (21nsec 2 2rX) . (5.24) 

If we now identify pn(t) with Mz(t) and po with Mo 
we get the Bloch equation for Mz (t): 

dpn(t)/dt= ( 2 / T ) In sec22rX[p0-^i3(0] (5.25) 

or equivalently, 

dl£,(t)/dt= ( l / r i ) [ J f 0 - A f . ( 0 ] . (5.26) 

I t should be noted that the relaxation times Tx and T2 

are different in the example treated here. Further the 
relaxation time Ti is the same in the spin systems 
treated in Sees. 3 and 4. 

If we let / —> oo in Eq. (5.23), we obtain 

£13(oo)= - J t a n h a . (5.27) 

The density matrix pA(t) for the subsystem at t= GO is 
given by 

p^(oo) = i j - - i tanhx<ji3 

coshx—an sinh# exp(—3CAfi) 
= = , (5.28) 

2 cosh* ZA{0) 
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since 

cosh*-(Tig sinh#= e~
anx= e~an^ = e x p ( - 5 C ^ ) 

and 
Tr6_(rl3X=Tr(cosha;—<7i3 sinh#) = 2 cosh#, (5.29) 

where 3CA=a)<ru. The result in (5.28) shows that the 
system A in contact with system B (which is main
tained at temperature T) attains the thermal distri
bution corresponding to temperature T as /—> oo. 
Now, we write the density matrix pA(t). I t is given by 

PA(t) = ^I+e-t^pll(0)an+e~t^Pn(0)(T12 

+e-tlTipn(0)<m+pocrn(l-e-tlT>). (5.30) 

6. DYNAMICS OF THE TWO COUPLED SPINS WHICH 
ARE AT EQUILIBRIUM SEPARATELY AT TEM

PERATURES Ji AND T*, RESPECTIVELY, AT 
* = 0 AND ARE ALLOWED TO 

INTERACT AT t>0 

The system considered is a set of two spins A and B 
initially at equilibrium at temperatures T\ and T2, 
respectively. The system B is maintained in a thermal 
bath at temperature T2 and A is not in contact with any 
kind of bath. The system A relaxes by virtue of its 
interaction with B. The problem is to study the re
laxation of A and its approach to equilibrium by its 
interaction with B and using the stirring hypothesis 
with a fundamental interval r. 

The Hamiltonian for the combined system is given by 

3Cc=3CA+3CB+0Cint; 3CA = c*r13, 3e*=axr23, 

3Cc=^(<7i3+a23)+X(o-iJ(72j-), (6.1) 

where oo=—yHo/2. As in the example treated in Sec. 
4, an external static magnetic field is applied to the 
system in the z direction. 

The density matrix for the composite system at t=0 
is given by 

Pc(0) = p^(0)pfl(0), 
where 

PA (o) = exp ( - 3CA/31)/Z
A (6.2) 

and 
p*(0) = exp(-3C*ft) /Z5 . (6.3) 

The quantities ft, ft, ZA, and ZB are defined as follows: 

0i=l/kTu Z ^ = T r e x p ( - 3 C ^ f t ) , 

ft= 1/kTi, ZB=Ti exp(-3C*ft), 

where k is the Boltzmann constant. 
The unitary transformation which maps pc(0) into 

PC(T) is given by 

UC(T) = exp{ -C^(^i3+o-23)+Xo-i i0-2i>}. (6.4) 

The density matrix for the subsystem A after taking 
the partial trace with respect to the system B is 
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given by 

p i l(r) = — cosh^ioa—JcrJ cos4Xr-
sinh(/3i—p2)o> 

coshjS^ 

sinh(jSi+i32)aj-] 

cosh^2W J 
1 

YA (coshjSiw—<7i3[sinh/3iw cos22Xr 

+sin22Xr cosh^i&j tanhjS^]}. (6.5) 

The density matrix pA(0) could be written in the fol
lowing fashion: 

pA(o) = (l/Z^)[cosh0ia>-cri3 sinh/3ia)]. (6.6) 

If we define smha$i==— pu(0) we can compute 
pn{\r) from (6.5). I t is given by 

pn{\r) = cos22Xr^i3(0)+sin22Xr coshftco tanh/3^. (6.7) 

We can now calculate pn(nr) by iterating the equation 
above and obtain 

M(wr)=(cos22Xr)«/>i3(0) 
r ( cos 2 2Xr) n - l -

+sin22rX cosha>0i tanhc^i -
r r - l l 

r - 1 J L cos22X 
= (cos22Xr)^i3(0) 

+coshco/3i tanhco&[l- (cos22Xr)n]. (6.8) 

Now substituting / for nr in (6.8) we get 

£i3(0 = 
1 

-{(cos22Xr)^i3(0) 

+cosh<o0i t a n h ^ s C l - (cos22Xr)'/r]} 

1 
Kcos^Xry^iPiz^+Po^Pol 

1 

ZA(0i) 
Le-^ipuW+Pol-po], 

where pa=— cosha>/3i tanhcofo and jri=T/21nsec22rX. 
The expression (6.9) is very similar to Eq. (5.23) 
discussed in detail in the previous section. We can now 
write pA (t) at /. I t is given by 

PA(I>-
^GSi ) 

{coshwjSi 

-<nzZe~«T*(pn(0)--po)-pol}. (6.10) 

We could find the equilibrium distribution of the 
density matrix of the subsystem A by letting t —> <x> in 
(6.10): 

pA(co) = 
1 

ZA(pi) 

1 

2 cosh£io> 

(cosh/Sico+cr^o) 

(cosh/3ioj—<Ti3 coshjSico tanhw£2) 

1 

2 cosh#2w 
-(coshco/82—o-i3 sinhj(32w) 

e x p ( - 5 C ^ 2 ) 

ZA(fi2) ' 
(6.11) 

since ZA(fix) = Tr e x p ( - 3 C ^ i ) = 2 cosh&w, ZA (02) 
= 2 coshj(32W, and 3Q,A=(Tuw. I t is seen from Eq. (6.11) 
that the subsystem A attains the thermal distribution 
corresponding to the bath at temperature T% as one 
expects. We further notice the relaxation time T\ is 
the same as the ones we obtained in Sees. 3, 4, and 5, 
given by 

T1=r/(21nsec22rX). (6.12) 

7. RELAXING COUPLED HARMONIC OSCILLATOR 

The system considered in the example is a set of two 
harmonic oscillators A and B. Both the systems A and 
B are initially in equilibrium at temperatures Ti and 
T2 at t=0. At t>0 the system B is maintained in a 
thermal bath at temperature T2y but A is not in contact 
with any kind of bath. System A relaxes by virtue of its 
interaction with system B. We study here the relaxation 
of system A and its approach to equilibrium by its 
interaction with system B using the stirring hypothesis 
with a fundamental interval r. 

The Hamiltonian of the combined system is given by 

= [co0it0i+ct>02f02+Xco (01*02+02
t0i)], (7.1) 

where 
3CA = axzitai, Xs=co02

f02, 
and 

3Cint=Xco (a^a2+02*01). 

(6-9) We further define the following quantities: 

0 i T 

02 . t = 

pi+intwqi 

(2tnu)m ' 

p2+imcoq2 

(2ma)) 1/2 

a x =-

02 = = ~ 

Pi—itn&qi 

(2fm)1/2 ' 

p2—itno)q2 

(2tna)} 1/2 

(7.2) 

(7.3) 

where ph qh p2j 02 are momentum and position operators 
of the first and second harmonic oscillators, respectively. 
The quantity o> is the angular frequency of the harmonic 
oscillator; X is the strength of coupling between the two 
oscillators, A and B; and m, the mass, is the same for 
both the oscillators. 
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The operators ah aj9 a2, aJ have the following Equation (7.9) could be written as 

commutation relations: pc(r) = rZi(di)Z2(d2)l~1e~2ixJle~(9iaifai+d2a2ta2)$ixJl 

[a i )ay]=0, [ > W ] = 0 , exp( -2e / ) , r N ,. r ,*««* 
r n * • * 1 0 / 7 ^ = * exp(^ 3 ) e 2 ^ , (7.11) 
tahaft=5ih t=j=l,2. (7.4) Z1(61)Z2(62) 

The initial density matrices pA(0) and pB(0) have the where we have defined7 

Boltzmann distribution and are given by r t r t r i / t t \ 1 / \ 
6 J J+=ai

ta2, J-=a2
tah J3=iw^i -^2 t a 2 )= | (^ i—^2) , 

Pi(0) = Z f 1 ( ^ , l t 8 l h , (7-5) J 1 = | ( / 4 + / - ) = i («M+a2 tai) , 

where 0i=0i«, 02=02«, Pi=l/kTi9 /32=l/kT2, &=the 2* 2* 
Boltzmann constant, Ti=absolute temperature at i=K^i t f li+^2 t^2) = 1(^1+^2); 
which oscillator .4 is initially maintained, T2= absolute m=±(aia — a t a w r 
temperature at which oscillator i? is maintained at all 2 2 3> 

times, Zi(^i) = Tre-°lto1^ is the partition function for © = 1(01+02); 0=02—0i, #=Xcor. 
system 4 , and Z,(tf2) = Tnr^«»» is the partition i t can easily be verified that all t h e / ' s obey angular 
function for system 5. The density operator for the m o m e n t u m commutation rules; j and m can be con-
combined system pc at /=0 is given by s i d e r e d a s eigenvalues for / , and Jh respectively. 

pc(0)==pA(0)p5(0) = Zri(<9l)Z2-i((9)e-ait«i^-a2ta^2i (77) We can express (7.11) as 

exp(-2©/) 
The unitary operator which transforms pc(0) into pc(r) pc(r) = e~iaJze-%^J2e-%yJz^ (7.12) 
is given by Zi(0i)Z2(02) 

^ ( r ) = exp(-i3C^r). (7.8) where 
cos/3 =cos2/>+sin2£ cosg, 

The density matrix p(r) is given by tan7= tana= -cos£ tau(g/2), 
pe(r)==g-iX(aita2+o2tai)pC(0)eiX(ait°2+a2tai)> (79) p=2x, q= —iB. 

We obtain the simple relation (7.9) since Finally, the relation between the old and the new 
coordinate system is given by 

a n d [3^+ae* 3Cint]=0 tana= tan 7 =i cos2* tanh(0/2), (7.13) 

[Pc(0), 3C^+X5]=0. (7.10) cos/3= cos22s+sin22;r cosh0. (7.14) 

Here we have taken the density matrix in the energy We obtain pA (r) by taking partial trace with respect to 
diagonal representation. system B and it is given by 

(ni | pA (T) I »i>=YL (ni n21 Pc(T) ! nxn2) 

= $m'»iL («1»2 I P C W j »l»2> 
(7.15) 

1 
E <»i»21 e-2^e-iaJie-^j2e~^j3 \ nxn2) Zi(0i)Z2(02) 

1 [" ^^ / W l+^2 \1 

where 

1 f /ni+»2\n 

"^S>^GW H."20C"^-; J 3 0 1 * -—^ *M^> ^ 
((j+m) l(j-m) l(j+m) l(j-tn') !)1/2 

£>m'.*/(« A T ) = L (™ 1)* e-i(m'<H-m7) (sinJ/3)2ii:+w'-"l(cos|jS)2^"l-OTr-2^> 

J: (y—»'—JST) i(i+f»—JO IK: ic^+m'—«) 
7 J. Schwinger, Notes on Angular Momentum, NYO-3071, 1952. 
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j=z (»!+»2)/2, m= {ni—n^/2, and K is an integer. Now we can write (7.15) as 

1 
K|pA(r)|«i>S««' = £ exp[— 8(ni+n 2)] exp[—Ji(ni—»2)(a+7)] 

Zi(e1)z2(d2) « 

X L ( - 1 ) ' (coslj8)»»+»»-«x(sinli9)2JC. (7.16a) 
« (fi2-2s:)!(»i-jc)uri 

We finally obtain the following result after summing over n2 and K: 

( « 1 ' | p A ( r ) ! « i ) = 
ztfOZttpd [( 

cos§0 'l-sec§jff exp[i(7+a/2)-@]\- | n i 

exp[0+ ( i /2) (a+ 7 ) ] / U-cosJjS expp(7+«/2) - O ] / J 

If we now substitute a=7= i5 in (7.13) we get 

tanh5=cos2x tanh (6/2) 

Now substituting (7.18) in (7.17) we finally get 

cosj0exp(H-@)-l 

X l-secf0 expLHY+a/^;- < 

l-cos | i8expp(Y+a/2)-( 

X{l-coaJ/8 e x p p ( T + a / 2 ) - 0 ] } - 1 . (7.17) 

(7.18) 

Le 
-1 -p 1 
—cosiSlJ 1—cos§# .exp(0-5)[exp(0+5)-cos|/3]J l-cosjjfc-"*^ 

It could be shown that the trace condition TrpA(r)= 1 is satisfied. Equation (7.19) could be written as 

(nif\pA(r)\n1) = dnifniZ(e1(T))e-^e^ 

cos(|0)exp(0+5)--l 
with 

-ei(T) — f 

V exp(0-5) exp(@+5)-cos§# W 

(7.19) 

(7.20) 

(7.21) 

The quantity 0i(r) thus replaces 0i(O) = 0 - 0 / 2 as 
the effective inverse temperature after stirring once at 
the instant r. It could be seen from (7.20) that the 
initial Boltzmann distribution (7.5) attains another 
Boltzmann distribution at temperature [0i(r)]_1 at the 
first fundamental interval r. Now we can compute 
[01(2r)]~1, [0i(3T)J-\ —pi fa r ) ] - 1 to show that the 
system A attains the same temperature as that of 
system B as nr=t —> oo. Unfortunately, there is no 
simple analytical method of carrying out the iteration 

CURVE A* 0 ,«10, 6Z «5 , T,« j T2 

CURVE B-. 0 , « 5 t 02«IO, T , » 2 T 2 

0.20 

I4r 

FIG. 1. The "temperature" /£ /£? = p iWJ" 1 as a function of 
time / for the relaxation of an initial Boltzmann distribution. 
Broken curves refer to Montroll and Shuler and solid lines refer 
to the present results. 

process as in the case of spin systems. Since the tran
sient distribution of the relaxing oscillator is always 
canonical in this case it is possible to characterize it by 
a "temperature" J(t) = hv/kB(t). This result is similar 
to the result obtained by Montroll and Shuler,8 and 
Mathews, Shapiro, and Falkoff9 in the sense that the 
transient distribution of the relaxing oscillator is always 
canonically distributed. Even though it is not possible 
to compare the analytical expressions for 0i(r) as in 
our case there is no simple method of iterating the 
expression (7.21), we have shown in Fig. 1 that Montroll 
and Schuler's graphical results agree with the results 
obtained here. It could be seen in Fig. 1 that the 
relaxing oscillator attains the same temperature T% of 
the bath as / —> oo. 
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